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Synopsis 

The stress-strain curves for a series of linear aromatic polyesters were curve-fitted to yield 
constant parameters for the one-dimensional and three-dimensional constitutive equations for 
nonlinear viscoelastic properties. Using these constants, the stress-strain curves could be recon- 
stituted somewhat better by the one-dimensional equations, but the agreement with the three- 
dimensional curves was good. The same constants can be used to predict creep and stress- 
relaxation, the data for which are in a companion paper. 

INTRODUCTION 

Linear viscoelastic properties of solid polymers have been studied exten- 
sively both experimentally and theoretically. In use, polymeric materials may 
be subjected to deformations beyond the linear viscoelastic region, and this 
has prompted some theoretical and experimental studies into the nonlinear 
range. Eyring and Ha l~ey l -~  developed a set of one-dimensional constitutive 
equations based on a model composed of two springs and a nonlinear dashpot. 
Eyring4 also drew attention to the relationship of the viscosity of the dashpot 
to the rate of strain. 

These concepts were applied by Haward and Thackray5 to establish em- 
pirical constitutive equations for the one-dimensional treatment of the model 
with the viscosity varying with the rate of strain; a Hookean spring in series 
with the combination of an Eyring dashpot and a rubber elasticity spring in 
parallel. Titomanlio and Rizzo6v7 extended the concepts to a three-dimensional 
treatment using the equivalent model of a linear spring in parallel with a 
Maxwell unit. The viscosity of the dashpot was allowed to change with the 
rate of strain by an Eyring type mechanism, and the effects of free volume 
changes were included by use of the Doolittle' equation. However, their 
constitutive equations do not seem to have been extended to stress-relaxation 
or creep. A revised three-dimensional treatment has been devised which uses a 
different three-dimensional Maxwell equation suggested by O l d r ~ y d , ~  a vari- 
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able viscosity function, and the imposition of constraints in the evaluation of 
the parameters.1° Three series of linear aromatic polyesters had been synthe- 
sized." These formed series of polymers differing in known ways. It was of 
interest to study their time-dependent mechanical behavior at large deforma- 
tions, to describe other nonlinear viscoelastic features of a mechanical model 
whose constant parameters could be evaluated from the stress-strain data, 
and to correlate these parameters with the structures of the polyesters which 
had known chain configurations. 

In this paper the stress-strain tests are recorded and used to calculate 
constants for each polyester by curve fitting. The constitutive equations are 
used to describe the stress-strain process and the calculated curves are 
compared to the experimental curves. In a companion paper the same con- 
stants are used to predict creep and stress-relaxation and the corresponding 
theoretical curves compared to the experimental curves. 

THEORY 

The mathematical derivation of the constitutive equations may be found in 
the complete work." The one-dimensional equations for the model, illustrated 
by two Hookean springs and an Eyring nonlinear dashpot, are5 

u = u1 + u2 (1) 

do1 'ha 1 dr 
- + E I K  sinhi -) = El 
dt 2kT 

and 

u2 = E2c (3) 

in which u is the tensile stress, r is the tensile strain, and El and E ,  are the 
tensile moduli of the springs. The expression 

K sinh( -) Vila1 
2kT (4) 

is equal to the rate of strain of the dashpot.'2.13 v h  is the Eyring activation 
volume, K is Boltzmann's constant, T is absolute temperature, and K is a 
constant. 

The three-dimensional constitutive equations for the model of a Maxwell 
element in parallel with a rubberlike spring are677 

Stress u and the Lagrangian finite strain L G  are represented by their respec- 
tive tensors of second order. X is the relaxation time given by q/G1. G, and 
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G, are the elastic moduli of the Maxwell spring and the rubber elasticity 
spring, respectively. 1) is the viscosity of the dashpot and d is the rate of 
deformation tensor. 

The time derivative of stress ul is 

9 0 1  - + a{ul d + d ~ 1 }  
9t  

in which a is a constant and 9/9t is the corotational or Jaumann derivative. 
A variable viscosity is u s d  and is expressed similarly to Titomanlio and 

Rizzo,' who included the Eyring viscosity equation and the Doolittle free 
volume effect. The equation was changed by including 1 ~ ~ 1 ,  the magnitude of 
the deviatoric stress tensor,14 as follows: 

A rest relaxation time of 20 years is used, R and B are constants with the 
dimensions of Pa-', and (ul:6) is the first invariant of the stress tensor.15 

Analysis of the one-dimensional model yields an equation for the 
stress-strain curve as follows: 

u = Ep€ + - In p + {iTp tanh[ 7 l + P  (El+€/P + .)]I (10) 

+ l i  

where 

P = Z/K 

and 

a? is the stress at an infinitely long time and Z is the rate of sl-.ain. 

ship between stress and strain: 
A similar approach for the three-dimensional equations yielded the relation- 

u - G 2 [  (1 + €)3 -'I 
l + €  

3(G,  + G2) + G2(1 + a)[l/(l + E )  + 2 c 2  + 4~ - 11 - 2 ~ 0  

(1 + €1 
= o  (14) 

where V/Z, is ac/ i3t ,  u is the applied stress, and a is a constant. 
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The first constraint applied in the calculations is that E,,/3 > G, which 
guarantees stress-relaxation rather than stress growth with time. (E,,, is the 
secant tensile modulus.) The second is that G, > E2/3, where E,  is as used in 
eq. (10). This second constraint arises from the relationships: 

da 
- =  2G2(1 + E )  = E ,  
dc 

so that a constraint on E of 0.5 is used. The third constraint is that 40 < B / R  
< 100 which assures that the ratio B / R  is in a realistic range such that the 
free volume effect and the Eyring effect on the viscosity of the dashpot are 
equally important. 

EXPERIMENTAL 

Chemicals and polymerization technique for the linear aromatic polyesters 
used in this work were described previously." 

The chemical structures are indicated by a code of letters following a 
number. The number indicates the number of methylene groups in the glycol, 
nG. T, I, and TcoI indicate the terephthalate, isophthalate, and copolymer 
series respectively. The well-known Dacron would be 2GT. 

Film samples of all nGT, as well as 3GI and 4G1, were prepared by a hot 
pressing technique using a laboratory press at about 10 K above the melting 
temperature for 3 min, giving a film thickness of about 0.3 mm and a diameter 
of about 20 cm. The samples were then removed from the hot press and cooled 
to room temperature. Solution-cast films were obtained for 6G1, 8G1, 10G1, 
3GTco1, 4GTco1, 6GTc01, and lOGTcoI by pouring an approximately 10% 
solution in dichloromethane onto a glass plate floating on mercury and then 
drying gradually a t  room temperature for 2 days. The samples were then dried 
in a vacuum oven a t  313 K for 1 day before storing in a desiccator until used. 

All samples were cut in the same direction (e.g., in the radial direction of 
the circular sheet) into standard shaped dumbbell pieces. 

The mean effective length ( I , )  of the experimental samples was determined 
using the technique outlined by Titomanlio and Rizzo." Basically, two lines 3 
cm apart were marked a t  the central portion of the specimen. The samples 
were elongated in an Instron tensile testing machine a t  a crosshead speed of 
0.5 cm min-'. The machine crosshead was stopped when the yield point was 
reached. The ratios of the displacements between the two lines and the two 
jaws of the testing machine were determined and a mean value of the ratio 
was calculated. The number three divided by the ratio gave the mean effective 
length of the sample in cm. Subsequently, all strains E were determined using 
the expression E = A l / l , ,  where I ,  was found to be 4.5 k 0.3 cm and A1 is the 
displacement of the Instron jaws. 

The experimental results of load vs. elongation were converted into true 
stress vs. strain, where the true stress is equal to (1 + E) times the engineering 
stress. This is achieved by assuming a constant density. 

The tensile elongation tests were performed at  room temperature (295 K) 
by means of an Instron Universal Testing Instrument, floor model TT. Two 
different elongation rates, 0.5 and 2.0 cm min-', were chosen. During elonga- 
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tion, samples were inspected visually to ensure that the deformation was 
homogeneous throughout the constant cross-sectional region of the test piece. 
The sample was strained until fracture or until the first sign of necking. The 
stress-strain curves of the samples cut from the same sheet of film showed 
very good reproducibility with less than 4% standard deviation. Specimens of 
the same material prepared from two different sheets of film showed a slightly 
higher standard deviation of approximately 7%. 

RESULTS AND DISCUSSION 

To determine the value of a, eqs. (6) and (8) were applied to predict in a 
steady shear flow the apparent viscosity (?la) and the first and second 
normal-stress coefficients ( ql, +,), re~pectively.'~. l9 

Table I compares the material functions for some empirical differential 
models in a steady simple shear flow. The Dewitt model17 with a = 0 predicts 
a shear-rate dependent apparent viscosity as well as normal stress effects. 
However, application of this model to the deformation behavior of a solid 
polymer without rotational motion ( a  = 0) proved to be of little use. The 
White-Metzner rnodel,la with a = -1, gives a shear-rate-independent ap- 
parent viscosity and zero second-normal stress difference. Although its predic- 
tions are not very realistic, it  proves to be more useful for engineering 
calculations where a simple model is needed. With a = 1, the first- and 
second-normal stress coefficients are equal in magnitude and opposite in sign. 
This result disagrees with viscometric measurements on polymeric materials. 
From the above three cases, we can conclude that, if the value of a lies within 
the interval 0 and - 1, a more realistic model can be obtained. 

When a = -0.8 is considered, the model yields a shear-rate dependent 
viscosity, a positive first-normal stress difference with a shear-rate dependent 
coefficient, and a negative second-normal stress difference one-tenth the 
magnitude of the first one. For some time, it was thought that +, = 0 or that 
it was always negative. Now, some data1gy20 suggest that the +, may change 
from a negative sign to a positive sign at  high shear rates. This uncertainty 
allows one to widen the range for the values of a in which the model can be 
tested against the experimental results. 

The dependences of the three-dimensional parameters, B,  R ,  and G,, on a 
with A, = 20 years based on the stress-strain curve of sample 4GT were 

TABLE I 

Simple Shear Flow 
Comparison of the Material Functions for some Empirical Differential Models in a Steady 

Name of Value 9a $1 J.2 

model of a (Pa 4 (Pa s2) (Pa s2 - 42/41 

Dewitt 

White-Metzner - 1  9 29h 0 0 
a = l  1 9 29x -29x 1 

0.29h 
0.1 - 9 29h 

a = -0.8 - 0.8 
1 + 0.36A2+2 1 + 0.36h2+2 1 + 0.36h22p2 
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plotted. The results demonstrated that the three parameters remained essen- 
tially constant over the range of a between - 1 and 1 except a t  a = 0 where 
the deviation from the average values seems to be the most. The average 
values of G,, R, and B excluding those a t  a = 0 are respectively 71.5 MPa, 
6.76 GPa-', and 0.27 MPa-' for 4GT. 

MECHANICAL PROPERTIES 

The stress-strain curves of fifteen linear aromatic polyesters are shown in 
Figure 1. Samples 3GT, 3G1, and 5GT failed by brittle rupture at less than 5% 
strain due to their relatively high glass transition temperatures," below which 
the backbone configurations are essentially immobilized. The other samples 
were stretched to a point where necking or some sign of nonuniform deforma- 
tion could be visually observed. All curves show similar features; a short linear 
Hookean range followed by a monotonically increasing range without a sharp 
yield point or an elastic limit. The curve for 10GI shows a monotonically 
decreasing range after the yield point followed by a monotonically increasing 
range. This curve resembles that of a branched polyethylene. One general 
trend is that the copolyester series and those with longer methylene sequence 
lengths could sustain large deformations without failure. 

Figure 2 shows the dependence of the Young's modulus on the number of 
(CH,) groups n in the repeating unit of the three polyester series. The 
modulus decreases with increasing number of (CH,) groups and differs from 

STRAIN 
Fig. 1. Stress-strain behavior of aromatic polyesters at 295 K at an elongation rate of 0.5 cm 

min-': (A) 3GT; (B) 4GT; (C) 5GT; (D) 6GT; (E) 8GT; (F) 10GT; (G) 3GI; (H) 4GI; (I) 6GI; 
(J) 8GI; (K) 10GI; (L) 3GTcoI; (M) 4GTcoI; (N) 6GTcoI; and (0) 10GTcoI. 
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I 'I I ' I ' I ' I ' 
2 y\ 

(CH2) GROUPS 
Fig. 2. Young's modulus vs. number of methylene groups in the repeating unit for: (0) 

terephthalate series; (A) isophthalate series; (m) copolyester series; (- - -) trend. 

one series to the other with the terephthalate series in the highest range. It is 
interesting to note that the Young's moduli appear to converge to the same 
value, 0.2 GPa, as the quantity n increases from 3 to 10. With longer 
methylene sequence lengths, the influence of the phenylene group is out- 
weighted, and the aromatic polyesters behave somewhat like a low density 
polyethylene the Young's modulus of which is also 0.2 GPa. The three curves 
could not be combined simply, i.e., normalized. 

Table I1 lists the parameters that were determined for both equations. The 
values .of a = - 0.8 was used throughout the evaluation of the three-dimen- 
sional parameters unless otherwise stated. The quantities G, for the 
terephthalate and the isophthalate series vary with n in the same trend, with 
the latter in a lower range. The copolyester series shows that G, decreases 
linearly with n, followed by a sharp turn at  n = 6, reaching the highest value 
at n = 0. 

The parameter R,  is analogous to the expansibility or compressibility of a 
material under an external stress. A higher value of R reflects a bigger change 
in free volume for a given pressure. A general observation is that R increases 
with n for all three types of polyesters. Longer n-methylene group sequences 
in the repeating units of the linear chain in the polymer structure result in 
weaker intermolecular forces. Moreover, Yip and Williams21 have shown that 
the crystallinity of these polyesters decreases with increasing number of 
(CH,) groups. The crystalline structure in the polymers acts as a filler which 
could lower the overall expansibility or compressibility of the free volume of 
the materials. 

In the one-dimensional system, the viscosity of the dashpot is related to the 
Eyring activation volume V,. It represents the volume of a polymer segment 
which has to move as a whole for a flow to take place. For the terephthalate 
and the isophthalate series, V, increases almost exponentially with the num- 
ber of (CH,) groups. However, there is no consistent trend for the copolyester 
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series. The values of V, obtained here are of the same order of magnitude as 
those for many different polymers based on the data of Haward and Tha~kray .~  
The physical significance of V, may lie in the possible association of the 
statistical segment volume with it. However, the size of the “statistical link” 
in the polymer chain is estimated in solution whereas the Eyring volume is 
observed in the solid polymer. In the solid polymer each chain is surrounded 
by other polymer chains, so that more than one such link will have to move 
during a readjustment of relative positions and one would expect V, to be 
greater than the size of a statistical link. There are no data available on the 
volume of the statistical link for comparison with the values reported here for 
the linear aromatic polyesters studied. 

The Young’s modulus 3(G1 + G,), G,, R,  and B as a function of the 
number of (CH,) groups, rz ,  for the terephthalate series are in Table 11. When 
fitted by minimization of least-square errors, they conform to the empirical 
expressions as follows: 

R = 6.74 X 10-’0n’.76 (Pa-’) (18) 

B = 2.8 x 10-8n-’.75 (Pa-’) (19) 

These four expressions will be used to predict the creep and stress-relaxa- 
tion behavior of some new and published data in a companion paper. 

COMPARISON OF PREDICTIONS WITH EXPERIMENTAL 
STRESS-STRAIN DATA 

In Figures 3-7, the stress-strain data for the various linear aromatic 
polyesters, which were replotted from the composite set of curves in Figure 1, 
have been fitted using the one-dimensional equations (10)-(12) to obtain p, V, 
and K, respectively, and the three-dimensional equation (14) by means of the 
direct search computer program,” which yielded the model parameters as 
given in Table 11. 

The predictions of the one-dimensional equations are in excellent agreement 
with all the experimental stress-strain data (Figs. 3-7) except those of 3GTcoI 
(Fig. 7). In this particular case the best fitting could only be obtained with 
p = 0.22, with which the calculated curve could reach the highest possible 
value of the stress near the yield point region. 

The three-dimensional equation prediction is found to be fair. Near the 
region of the yield points, it  gives higher stresses than the experimental 
results. This is especially distinct in the case of 6GI (see Fig. 6) which does not 
have a distinct yield point. In Figure 6 the stress-strain data of lOGI have 
been fitted by omitting the yield behavior. The agreement between the 
prediction and the experimental curve is regarded as poor. 

In Figure 3 samples of 6GTcoI were subjected to two different strain rates, 
6.67 and 26.7 h-l. The results show that there is no difference in the elastic 
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0 0.1 0.2 03 

STRAl N 
Fig. 3. True stress vs. strain for (W) IOGTcoI, (0) 6GTcoI at  6.67 h-' rate of strain and (A) 

GGTcoI at 26.7 h-' rate of strain: (A) calculated by one-dimensional equations; (B) calculated by 
three-dimensional equations; (C) one-dimensional at higher strain rate; (D) one-dimensional at 
lower strain rate; (E) three-dimensional a t  higher strain rate: (F), three-dimensional a t  lower 
strain rate; (G) calculated from linear model equation (20) for the higher strain rate; 
(H) calculated from linear model equation (20) for the lower strain rate. Parameters taken from 
Table 11. All measurements at 295K. 

0 0.05 01 0 
STRAIN 

Fig. 4. True stress vs. strain for 4GT (0) and 8 GT (H) at  308 and 295 K, respectively: 
calculated from one-dimensional equations and (B, D) calculated from three-dimensional 
tions using the parameters in Table 11. 
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STRAIN 
Fig. 5. True stress vs. strain for (0) 4G1, (+) 6GT, (W) lOGT and (A) 8GI at 

calculated from the one-dimensional equations and (-) calculated from the 
sional equations; parameters from Table 11. 

295 K: (- - -) 
three-dimen- 

0 

-8 

M Pa 

0 0.08 0.16 0.24 0.32 
STRAIN 

Fig. 6. True stress vs. strain for (A) 6GI and (+) lOGI at 295 K: (---) calculated from 
one-dimensional equations; (-) calculated from three-dimensional equations; parameters 
from Table 11. 
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"0 0.08 0.1 6 0.24 0.32 
STRAIN 

Fig. 7. True stress vs. strain for (A) 3GTcoI and (M) 4GTcoI at 295 K: (- - -) calculated from 
one-dimensional equations; (-) calculated from three-dimensional equations; parameters in 
Table 11. 

Hookean region of the stress-strain curve. Beyond the linear elastic limit, the 
stress-strain behavior becomes strain-rate-dependent. The curve with the 
higher strain-rate is displaced to a slightly higher stress level with a more 
pronounced yield point. A crosshead speed greater than 2 cm min-' was not 
used because the samples were seen to develop nonuniform deformation at a 
very early stage, E = 0.13. The stress-strain equation (14) based on the 
three-dimensional approach contains the term V/Zo, which makes the predic- 
tions for the stress-strain curve dependent on the deformation rate. This is 
demonstrated in Figure 3. However, the model only predicted a small shift in 
the stress-strain curve with a fourfold increase in the rate of strain. 

The values of G, and G, do not change with the strain rate. The other two 
parameters, R and B, change correspondingly with an increase in the strain 
rate. Their new values at 1 = 2.67 h-' are 0.82 GPa-l and 3.28 MPa-', 
respectively, giving a lower viscosity of the dashpot at a higher rate of strain. 
In Fig. 3, the one-dimensional predictions of the stress-strain data on 6GTcoI 
a t  both strain rates are also shown. Similar to the three-dimensional ap- 
proach, the values of El and E ,  remain unchanged with strain rateo while the 
values of p, K ,  and V, change to 14.2, 5.2 X s-l and 8000 A3, respec- 
tively. Also shown in Figure 3 is the theoretical prediction of the stress-strain 
behavior of 6GTcoI based on a linear The m ~ d e l ~ ~ * ~ *  is for a typical 
standard linear solid for which the equation that depicts a stress-strain 
behavior at a constant strain rate is 

By fitting the curves of 6GTcoI in Figure 3, the parameters of eq. (20) were 
found to be E, = 4.6 MPa and E3 = 31.4 MPa at both strain rates, while 
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q = 2000MPasat i = 1.85 X 
s-'. The viscosity is related to the strain rate by a linear equation, q = 2.45 X 
lop3 - 2.41 x lo%, where 1 is in s-l and TJ is in MPa s. By substituting the 
expression for q into equation (20), a single equation is obtained to represent 
the stress-strain behavior of 6GTcoI at two different strain rates as shown in 
Figure 3. To obtain a single equation representative of all stress-strain data 
at all rates would require the incorporation of more Maxwell units to give a 
spectrum of relaxation times. To avoid complexity, no attempt was made to 
include more discrete relaxation times in the model. 

s-l and q = 660MPasat 1 = 7.41 X 

SUMMARY 

Equations developed to enable the prediction of viscoelastic properties from 
parameters calculated from stress-strain curves were used to calculate or 
reconstitute the stress-strain curves. The simple one-dimensional equations, 
based on a one-dimensional model, yielded a better fit than did those based on 
the three-dimensional interpretation of the same model. 

Having to solve for three parameters from the nonlinear constitutive 
equations simultaneously from a set of stress-strain data subject to several 
constraints, the direct search computer optimization procedure proved to be 
very desirable. 

Young's modulus decreased with an increasing number of (CH,) groups in 
the repeating unit and differed from one series to the other with the 
terephthalate series highest, the isophthalate series next, and the copolyesters 
lowest. 

Supported by the Natural Sciences and Engineering Research Council of Canada. 
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